Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.12.571262

ABSTRACT

SARS-CoV-2, like many viruses, generates syncytia. Using SARS-CoV-2 and S (S) expressing recombinant vesicular stomatitis and influenza A viruses, we show that S-mediated syncytia formation provides resistance to interferons in cultured cells, human small airway-derived air-liquid interface cultures and hACE2 transgenic mice. Amino acid substitutions that modulate fusogenicity in Delta- and Omicron-derived S have parallel effects on viral interferon resistance. Syncytia formation also decreases antibody virus neutralization activity in cultured cells. These findings explain the continued selection of fusogenic variants during SARS-CoV-2 evolution in humans and, more generally, the evolution of fusogenic viruses despite the adverse effects of syncytia formation on viral replication in the absence of innate or adaptive immune pressure.


Subject(s)
Severe Acute Respiratory Syndrome , Vesicular Stomatitis
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.06.539698

ABSTRACT

Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, enhanced infectivity maps to the step of cellular entry and evolved recently through mutations unique to Omicron Spike. Unlike earlier variants of SARS-CoV-2, Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon matrix metalloproteinases to catalyze membrane fusion. This entry pathway unlocked by Omicron Spike enables evasion of interferon-induced factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.15.440067

ABSTRACT

Infection by SARS-CoV-2 generally causes mild symptoms but can lead to severe disease and death in certain populations, including the immunocompromised. Drug repurposing efforts are underway to identify compounds that interfere with SARS-CoV-2 replication or the immunopathology it can elicit. Rapamycin is among those being currently tested in clinical trials for impacts on COVID-19 severity. While rapamycin and rapamycin analogs (rapalogs) are FDA-approved for use as mTOR inhibitors in multiple clinical settings, including cancer, we previously found that rapamycin can increase the susceptibility of cells to infection by Influenza A virus. In this study, we tested the impact of rapalogs on cellular susceptibility to SARS-CoV-2 infection. We report that rapamycin and rapalogs increased SARS-CoV-2 titers in human cervical epithelial and lung epithelial cell lines to different extents, and a similar pattern of enhancement was observed using pseudovirus incorporating viral fusion proteins from SARS-CoV-2, SARS-CoV, MERS, and Influenza A Virus. Rapalogs also promoted cell entry driven by SARS-CoV-2 Spike in nasal cells and primary small airway cells, representing proximal and distal ends of the human respiratory tract, respectively. Interestingly, cell entry enhancement by the rapalog ridaforolimus was cell type-dependent, revealing a previously unrecognized functional divergence between rapalogs. The differential activity of rapalogs was associated with their capacity to induce the degradation of interferon-inducible transmembrane (IFITM) proteins, restriction factors that broadly inhibit virus infection. Our findings will spur the development of mTOR inhibitors that do not suppress the first line of antiviral defense in cells.


Subject(s)
Severe Acute Respiratory Syndrome , Tumor Virus Infections , Neoplasms , Death , COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.11.246678

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. Here we show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by expression of human IFITM1, IFITM2, and IFITM3, using both gain- and loss-of-function approaches. Mechanistically, restriction of SARS-CoV-2 occurred independently of IFITM3 S-palmitoylation sites, indicating a restrictive capacity that is distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the human IFITM3 endocytosis-promoting Yxx{Phi} motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which reportedly increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into strong enhancers of infection. In sum, these data uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal virus restriction. Indeed, the net effect of IFITM3 on SARS-CoV-2 infections may be a result of these opposing activities, suggesting that shifts in the balance of these activities could be coopted by viruses to escape this important first line innate defense mechanism.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL